Home Библиотека Книги Мечта летать (Волков И.В.) - Глава 6. МЕТЕОРОЛОГИЯ.
Мечта летать (Волков И.В.) - Глава 6. МЕТЕОРОЛОГИЯ. PDF Печать Email
Автор: Силенко Владимир   
Индекс материала
Мечта летать (Волков И.В.)
ТЫ ПОМНИШЬ, КАК ВСЕ НАЧИНАЛОСЬ...
ВВЕДЕНИЕ
Глава 1. РАЗВИТИЕ ПЛАНИРУЮЩИХ СИСТЕМ.
Глава 2. ОБЩИЕ СВЕДЕНИЯ.
Глава 3. СНАРЯЖЕНИЕ И ОБОРУДОВАНИЕ
Глава 4. АЭРОДИНАМИКА И ДИНАМИКА.
Глава 5. ОСНОВЫ АЭРОЛОГИИ.
Глава 6. МЕТЕОРОЛОГИЯ.
Глава 7. ВОЗДУШНОЕ ПРАВО.
Глава 8. ОПАСНЫЕ РЕЖИМЫ ПОЛЕТА ПАРАПЛАНА.
Глава 9. ДЕЙСТВИЯ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ.
Глава 10. ОКАЗАНИЕ ПЕРВОЙ МЕДИЦИНСКОЙ ПОМОЩИ.
Все страницы

ГЛАВА 6

МЕТЕОРОЛОГИЯ.

Данная лекция представляет собой краткий экскурс в науку об атмосфере и происходящих в ней процессах - метеорологию. Даже более того, в основном это будет экскурс в часть метеорологии, называемую микрометеорологией, позволяющей говорить о погоде в очень мелких масштабах (до 80 км) и сроках (не более суток). Также мы затронем часть макрометеорологии, изучающей более глобальные явления, такие как воздушные фронты и барические системы.

«Для чего парапланеристу нужно все это знать?», - спросите вы. Конечно же, можно спокойно летать, и не зная того, о чем пойдет речь в дальнейшем, но если вы хотите уметь предсказывать изменения в погоде, находить восходящие потоки ориентируясь не только на свою интуицию, но и на науку, что, кстати говоря, довольно сильно повышает ваши шансы на успех, и если вы хотите знать о тех опасностях, которые таятся подчас в воздухе, то ответ на этот вопрос, пожалуй, очевиден.

Начнем же мы, пожалуй, с повторения школьного курса физики

Свойства воздуха

В атмосфере земли в воздухе давление зависит от высоты, от этого зависят его плотность и состав. Плотность воздуха оказывает некоторое влияние на наши полеты. Ее определяют три фактора: температура, давление и влажность. Теперь давайте вспоминать: пусть у нас есть какое-то определенное количество воздуха m, находящегося под давлением p и с температурой t. При этом воздух займет объем V. Если теперь мы сожмем этот воздух до объема V0, то его температура повысится до t0. Если же мы заставим этот воздух занять объем больший, чем V - V1, то температура воздуха упадет до t1.

Итак, при увеличении объема (т.е. при уменьшении давления) постоянное количество воздуха охлаждается и стремится занять больший объем, при уменьшении объема (т.е. при увеличении давления) - нагревается и стремится занять меньший объем. При постоянном давлении, при нагревании постоянное количество воздуха стремится занять больший объем (расширяется), при охлаждении - стремится занять меньший объем (сжимается).

Как уже говорилось, воздушное давление в атмосфере Земли зависит от высоты. Чем высота больше, тем давление меньше и наоборот. На этом принципе работают все (или почти все) высотомеры, используемые пилотами. Если связать это с изложенным выше, то получится следующее:

Когда воздух поднимается, его давление уменьшается, воздух расширяется, остывает, плотность его уменьшается. И наоборот, снижаясь, увеличивается давление, плотность и температура.

 

Нельзя однозначно сказать, что более холодный воздух имеет меньшую плотность, а более теплый - большую. Однако однозначно, что при расширении или сжатии температура воздуха изменяется. Процесс, когда изменяется температура без отдачи или поглощения тепла называется адиабатическим.

Вода постоянно и сильно влияет на погоду, так как она занимает большие площади и присутствует в воздухе в качестве паров и как облака. Полное количество водяных паров, находящихся в атмосфере, более чем в 6 раз превышает количество воды во всех реках земного шара! Водяные пары образуются из открытых водоемов, и туда же возвращаются.

Водяные пары - это газообразная фаза воды, а облака состоят из мельчайших капелек воды, которые конденсируются из пара. Условие образование облаков из пара называется точкой росы. Точка росы для данной порции воздуха дается как температура, и зависит от его влажности.

Абсолютная влажность измеряется как количество паров воды в данном объеме воздуха (г/м3). Она изменяется от 1/10000 до 1/40 в зависимости от испарений и температуры. Относительная влажность измеряется в процентах как отношение фактического содержания водяных паров в воздухе к максимально возможному при данной температуре. В теплом воздухе может содержаться больше водяных паров, чем в холодном. Поэтому, при одной и той же абсолютной влажности, у теплого будет меньшая относительная. Следовательно, относительную влажность воздуха можно увеличить путем его охлаждения. Если воздух остыл достаточно и его относительная влажность приближается к 100%, то начинают формироваться облака. Температура, до которой остыл этот воздух, называется точкой росы.

Зимой холодный воздух всегда более близок к насыщению, чем летом, потому, что он может растворить меньшее количество паров. Поэтому зимой, в основном, большее количество облаков, более быстрое выпадение осадков и более низкая база облаков.

Свойства водяных паров подниматься и расширяться, обмениваясь теплом с атмосферой очень важны для погодных процессов. Каждая тонна воды в процессе конденсации выделяет почти 600 000 Ккал. Эта энергия является главной движущей силой грозовых фронтов, ураганов, штормов и других процессов, связанных с сильными ветрами.

Влажный воздух легче сухого, как это ни парадоксально звучит. Вес водяных паров составляет около 5/8 от веса сухого воздуха (два атома водорода и один атом кислорода сравнимы по массе с двумя атомами азота или двумя атомами кислорода). В результате влажный воздух поднимается над сухим. Это свойство важно для прогрессирования термической и грозовой активности.

Солнечное тепло

Солнечное тепло - одна из двух причин движения воздуха в атмосфере (вторая - гравитация). Солнечная радиация не нагревает воздух сама по себе, она нагревает землю, которая передает тепло нижним слоям атмосферы. Большая ее часть проходит сквозь воздух. То, что останавливается в воздухе, нагревает его только на 0.2 - 0.5 градуса

Цельсия за день в зависимости от количества водяных паров и загрязнения атмосферы. Много лучей поглощается или отражается назад от облаков. Земли достигает около 43%. Их судьба зависит от того, куда они попадут. Склоны, ориентированные на юг поглощают больше тепла, чем горизонтальная поверхность (в северном полушарии), а особенно, чем северные склоны. Вогнутые поверхности поглощают больше тепла, чем плоские или выпуклые. Деревья и трава отражают зеленый свет, в то время как песок - около 20% достигающей его радиации. Снег и лед отражают от 40 до 90%, а темные поверхности, такие, как вспаханные поля или асфальтовые площадки - только 10-15%.

Вся радиация, которая достигает земли, включается в процесс нагрева. Некоторое количество тепла распространяется вглубь земли, остальное работает на нагрев атмосферы, когда тепло распространяется в ней путем конвекции. Часть тепла идет на нагрев воды, которая позже отдает его в атмосферу, как водяные пары, конденсирующиеся в облака.

Поверхность земли влияет на то, как тепло поглощается и отдается в воздух. Например, теплый песок легко отдает тепло, в то время, как вода прогревается глубоко и не отдает тепло, пока температура не поднимется до определенной величины. В основном воздух нагревается от наиболее прогретой поверхности земли.

Атмосфера

Как уже упоминалось, воздух нагревается от земли. С высотой уменьшается плотность атмосферы. Комбинация этих двух факторов создает нормальную ситуацию с более теплым воздухом у поверхности и постепенно охлаждающимся с увеличением высоты. Эта ситуация называется градиентом температуры. Стандартный градиент (СГ) (или градиент «нормальной» атмосферы) предполагает уменьшение температуры на 2 градуса Цельсия каждые 300 метров увеличения высоты. Теперь посмотрим на более реальные ситуации в ночное и дневное время. Ночью видно, что воздух более холодный у земли из-за контакта с охлажденной поверхностью. Это положение дел называется приземной инверсией и типично для ночи. Приземная инверсия может распространяться вверх до 300 м и даже более при наличии ветра и интенсивного перемешивания слоев. Слово инверсия обозначает тот факт, что температура воздуха увеличивается или, по крайней мере, не уменьшается с увеличением высоты, как при СГ. Воздух в инверсионном слое стабилен. (Об этом понятии немного ниже).

Дневная ситуация выглядит по-другому. Здесь воздух у земли более теплый, чем на СГ. Это связанно с солнечным прогревом воздуха. Градиент, показанный в нижней части на графике С, известен как нестабильный и представляет для нас большой интерес.

 

Стабильный воздух - это воздух, который не перемещается в вертикальной плоскости. Давайте рассмотрим этот процесс. Представьте себе пузырь воздуха, поднимающийся в атмосфере, как показано на рисунке.

С подъемом он расширяется, и давление в нем уменьшается. Это давление изменяется примерно линейно до высоты 3000 м. И приводит к охлаждению воздушного пузыря примерно на 1 градус Цельсия каждые 100 метров подъема.

Норма охлаждения поднимающегося воздуха 1°С/100 м называется сухоадиабатическим градиентом (САГ). Сухой не потому, что в воздухе отсутствуют водяные пары, а потому, что они не конденсируются. Адиабатический, потому, что тепло не добавляется из окружающего воздуха и не отдается ему. В реальности некоторый теплообмен имеет место, но он обычно ограничен и незначителен.

Как мы знаем, теплый воздух имеет меньшую плотность, чем холодный при одном и том же давлении. Более теплый воздух стремится подняться вверх, как более легкий, а более холодный опуститься вниз. По этой же причине дерево в воде всплывает, а камень - тонет.

Итак, если наш пузырек поднимается в атмосфере, которая остывает медленнее, чем 1°C/100 м, тогда пузырек будет остывать быстрее, чем окружающий воздух и, следовательно, подниматься медленнее до тех пор, пока ситуация не будет соответствовать рисунку выше. Фактически пузырек достигает высоты, соответствующей уровню равновесия, после чего подъем прекращается и наоборот. Это условие стабильности.

Нестабильный воздух ведет себя наоборот. При градиенте температуры в атмосфере более 1°C/100 м, пузырек воздуха поднимается быстрее, не остывая так сильно, как окружающий воздух и подъем ускоряется.

Нестабильность воздуха определяется его несбалансированностью. В более низких слоях он слишком теплый и спокоен в вертикальной плоскости (отметим, что горизонтальный ветер присутствует и в стабильной и в нестабильной атмосфере).

Теперь мы можем сформулировать краткое определение:

Условия стабильности наблюдаются, когда атмосферный градиент температуры меньше, чем 1°C /100 м. В противном случае воздух нестабилен.

Важно отметить, что в стабильных условиях всякое движение воздуха вниз также натыкается на препятствие, в то время, как в нестабильном воздухе, опускающийся пузырек будет продолжать опускаться. Стабильность и нестабильность условий существенно влияют на турбулентность. Нестабильные условия приводят к возникновению термической активности, которую мы рассмотрим ниже.

 

 

Атмосферный градиент температуры больший 1°C /100м называется суперадиабатическим градиентом (Супер АГ). Условия Супер АГ встречаются в основном только над раскаленными пустынями, или, в менее жарких районах, в солнечные дни над ограниченными, закрытыми участками земли.

Поднимающийся воздух, вмещающий в себя пары воды, расширяется и охлаждается, а его относительная влажность увеличивается. Если этот процесс продолжается, то относительная влажность достигает 100%, в таком случае говорят о насыщении воздуха. При определенной температуре возникают условия точки росы. Если этот воздух продолжает подниматься, начинается конденсация, которая всегда проходит с выделением «скрытого тепла». Его выделение приводит к нагреву воздуха, он медленнее остывает, чем по САГ, и продолжает подъем.

Такое положение вещей называется влажно адиабатическим градиентом (ВАГ). Это градиент между 1.1 °C и 2.8 °C на 300 м высоты, зависит от температуры поднимающегося воздуха и в среднем составляет около 0.5 °C/100 м.

Когда температурный профиль атмосферы находится между САГ и ВАГ, говорят, что атмосфера «условно нестабильна», подразумевая, что при дальнейшем насыщении она будет нестабильной, так как это приведет к конденсации и образованию облаков.

Зона правее ВАГ - абсолютно стабильная атмосфера. Воздушная масса в атмосфере с градиентом в этой зоне будет всегда стремиться вернуться в исходную позицию, даже если происходит конденсация. Зона левее САГ - область абсолютно нестабильных условий со спонтанным образованием термичности (Супер АГ).

Для парящих полетов нужны условия нестабильные, в то время, как для полетов, например, с мотором, желательно чтобы воздух был стабилен.

В основном, ясная безоблачная ночь, переходящая в ясное утро, несет нестабильные условия. Для таких условий характерны толстый слой холодного воздуха, что нестабильно, учитывая нагрев воздуха от земной поверхности утром. Однако очень холодные ночи задерживают начало широкой конвекции из-за приземной инверсии.

День обещает быть очень стабильным, если небо закрыто сплошными облаками или облачность переменна и земля прогревается постепенно. О стабильности атмосферы можно судить по типу облаков. Образовывающиеся кучевые облака указывают на восходящие потоки и всегда предполагают нестабильность. Слоистые облака обычно говорят о стабильности. Дым, поднимающийся вверх до определенного уровня и растекающийся там - явный признак стабильности, в то время, как высоко поднимающийся дым указывает на нестабильные условия.

 

Пыльные смерчи, порывистый ветер и хорошая видимость указывают на нестабильность, в то время, как устойчивый ветер, слои тумана и слабая видимость говорят о стабильном воздухе.

Облака

Облака состоят из бесчисленного множества микроскопических частичек воды различных размеров: от 0.0001 см в насыщенном воздухе и увеличиваются до максимума около 0.025 см при продолжающейся конденсации. Как было сказано, насыщенный воздух- это воздух, имеющий относительную влажность 100%. Даже не изменяя количества водяных паров, воздух может стать насыщенным при охлаждении. Главный путь образования облаков - охлаждение влажного воздуха. Это происходит при охлаждении воздуха, когда он поднимается вверх в термальных потоках, а также при перетекании больших «теплых» воздушных масс сверху на более холодные.

Точка росы может использоваться для определения нижней границы (базы) облаков (cloudbase). Допустим, что поднимаясь, воздух охлаждается по САГ, т. е. 1 °C /100 м. Однако температура точки росы понижается только на 0.2 °C /100 м. Таким образом, температуры поднимающегося воздуха и точки росы сближаются на 0.8° С /100 м. Когда они уравняются, начинается образование облаков. Таким образом, зная температуру воздуха у поверхности земли, и точку росы при данной температуре, можно определить высоту базы облаков по формуле

h = ((Ts-Tr) / 0.8) * 100.

Для нахождения точки росы используют влажно-электрический термометр. Высоту базы облаков важно (хотя и не необходимо) знать, потому что фактически это - максимальная высота, которая может быть набрана за счет использования термальных потоков.

 

В какой-то момент времени поднимающийся воздух достигает точки росы, имея 100% относительную влажность. Тогда вроде бы созрели все условия для образования облаков. Но, что интересно, ему нужно что-то для реализации этих условий. Без «помощника» воздух может стать супернасыщенным, с относительной влажностью более 100%. Этим помощником являются мельчайшие частички, находящиеся в воздухе.

Они называются центрами (ядрами) конденсации, потому, что они подталкивают Пары к конденсации вокруг себя или центрами сублимации, если пар кристаллизуется в лед. Это можно наблюдать на холодном стекле зимой.

Центрами конденсации, вокруг которых образуются капельки, могут быть продукты сгорания, капельки серной кислоты и частички соли. Первые два вида - продукты загрязнения, последние - результат работы морских и океанских волн, бьющихся о берег. В роли центров сублимации, на которых образуется лед, выступают также пыль и вулканическая пыль. Центры сублимации сравнительно крупные, поэтому их редко заносит на высоты, где температура обеспечивает образование льда.

След, оставляемый самолетом, летящим на большой высоте - тоже состоит из частичек льда. Но кристаллизация там происходит не только вокруг продуктов сгорания, а еще и за счет сотрясения воздуха, вызываемого самим самолетом. Таким же образом можно охладить расплавленное железо до температуры на 300 °C ниже температуры плавления, и при этом оно будет оставаться жидким. Но достаточно небольшого толчка, и расплав мгновенно застывает.

Размеры капелек около 0.001 см в насыщенном воздухе - это уже видимая масса. Когда идет процесс конденсации, они увеличиваются до 0.0025 см. Даже имея такие сравнительно крупные размеры, капельки так легки, что могут оставаться в облаках, не падая вниз.

Существует несколько факторов, определяющих жизнь облаков. Для начала, облака формируются изолированными восходящими потоками (термиками), имеющими тенденцию к перемешиванию с окружающим воздухом. Первоначально воздух в термике перемешивается только вдоль его границы, но после начала конденсации паров, происходит выделение скрытого тепла и более интенсивное перемешивание с окружающим воздухом.

Одно изолированное кучевое облако живет около 0.5 часа с момента появления первых признаков конденсации до распада его в атмосферную массу. В воздухе может находиться большое количество облаков, которые зарождаются, живут и умирают в непрерывном процессе.

Не всегда облака распадаются так быстро. Это происходит, когда окружающий воздух на уровне облаков имеет такую же влажность и идет перемешивание.

Продолжающаяся термичность подпитывает облака и может продлить им жизнь сверх отпущенных им 30 минут. Грозы - долгоживущие облака. Образованные термическими восходящими потоками, они могут жить много часов.

Облака по высотам

от 6 до 13 км

Высокие облака

Cirrus (перистые) Ci Cirocumulus (перисто-кучевые) Cc Cirrostratus (перисто-слоистые) Cs

от 2 до 6 км

 

Облака средних высот

 

Altocumulus (высоко-кучевые) Ac Altostratus (высоко-слоистые) As Nimbostratus (слоисто-дождевые) Ns Nimbocumulus (кучево-дождевые) Cb

до 2 км

 

Низкие облака

 

Cumulus (кучевые) Си Stratocumulus (слоисто-кучевые) Sc Stratus (слоистые) St

 

Типы облаков и их характеристики

Название облаков

 

Обозначение

 

Образование

 

Высота

 

Вид

 

Дождь

 

CIRRUS

 

Ci

 

Теплый воздух поднимается над холодным (теплый фронт)

Обычно более 8 км

 

Тонкие, сужающиеся полоски ("лошадиный хвост")

 

Нет

 

 

CIRROCUMULUS

 

Cc

Ci-Cu

 

Подъем воздуха на большую высоту над теплым фронтом или волновые процессы между слоями

От 6 до 8 км

 

Барашки волн или пятнистое небо, тонкий слой облаков, объединенных в группы

 

Нет

 

CIRROSTRATUS

 

Cs

Ci-St

 

В теплом воздухе, поднимающемся над холодным (теплый фронт)

От 6 до 8 км

 

Облачный слой тонкий и прозрачный. М ожег образовывать светящийся ореол вокруг солнца и луны

Нет

 

ALTOCUMULUS

 

Ac

 

Подъем теплого фронта на большую высоту, или волны, или медленное перемешивание слоев

Около 3 км

 

Такие же как Си, только выше и связаны вместе в один слой

 

Нет

 

ALTOSTRATUS

 

As

 

В теплом фронте или охлаждающемся слое.

Около 3 км

 

Сплошной облачный слой. Неясные очертания солнца. Могут иметь случайные серые полосы

Нет

 

NIMBOSTRATUS

 

Ns

 

Из Sc в теплом фронте или охлаждающемся слое

Обычно 3 км

 

Темнее чем St. М ожег быть дождливая погода. Солнца не видно. Ухудшение видимости.

Постоян-ные

ДОЖДИ

STRATOCUMULUS

 

ScSt-Cu

 

Распад St, связанный с уменьшением стабильности; рассеивание в теплом фронте; облака от термичности, занимающие большие пространства

Обычно 2 км

 

Серые и темные облака, объединенные в слои. Часто небо голубое, движение облаков по кругу.

 

Нет

 

STRATUS

 

St

 

Поднимающий-ся теплый фронт или остывание слоя воздуха

 

Менее 6,5 км

 

Серый сплошной облачный слой закрывающий большую площадь. Весь слой на одной высоте.

Иногда мелкий

 

CUMULUS

 

Cu

 

От изолированных термических потоков

 

0,6-1,4 км, реже до 6,5 км в высо-ких горах

Похожи на хлопок или овечью шерсть. Вершины похожи на цветную капусту.

 

Нет

 

 

NIMBOCUMULUS

 

Cb Cu-Nb

 

Подъем нестабильного или влажного воздуха над горами, или вызванный проходом холодного фронта. Также чрезмерный рост термической активности

До 25 км

 

Темные, сильно развитые вверх. Вершина часто плоская как наковальня

 

Пролив-ные с грозами

 

Старые облака не умирают, они замирают. Более старые облака принимают желтоватый, более тусклый оттенок, чем новые. Кроме этого старые облака имеют более размытые кромки.

Существует три основных типа облаков. Это stratus - слоистые (St), cumulus - кучевые (Си) и cirrus - перистые (Ci). O форме слоистых облаков говорит их название - тонкие, плоские или наслаивающиеся, возникающие по причине медленного перемещения обширных масс воздуха. Эти облака покрывают большие площади и делают день серым. Они часто образуются в стабильных условиях, или при спокойном движении фронтов, или при медленных восходящих потоках вокруг систем низкого давления.

Кучевые облака выглядят как горы хлопка или огромная цветная капуста, летящая в высоте. Эти облака часто образуются в хорошую погоду и, если покрывают четверть неба или меньше, они называются облаками хорошей погоды, а образуются они от тепловой конвекции или отдельных восходящих потоков, несущих влагу вверх.

Далее облака делятся по высотам. Их типы и характеристики изложены в таблицах.

Фронты

Фронтом называется граница между холодной и теплой воздушными массами. Если вперед движется более холодный воздух, то фронт называется холодным, если же наоборот - то это теплый фронт. Иногда воздушные массы движутся вперед до тех пор, пока их не остановит возросшее перед ними давление. В этом случае границу между массами называют стационарным фронтом. В данном случае важно, что фронт разделяет воздушные массы с разной температурой, а значит и разной плотности. Воздушные массы разной плотности не стремятся к перемешиванию, подобно маслу с водой. Поэтому стационарный фронт может стоять несколько дней.

 

Холодный фронт движется в основном с севера на юг в северном полушарии и наоборот - в южном. Этот фронт в своей передней части состоит из холодного, часто сухого воздуха. Если холодный фронт замещает нестабильный воздух, то тот поднимается, и формирует конвективные облака. Этот тип фронтальной активно­сти часто сопровождают грозы и шквалы.

Шквалы порождаются грозами, что распространяется на 80-500 км в глубину фронта и вдоль него.

Холодные фронты имеют тенденцию к большей энергоемкости, чем теплые и могут перемещаться со скоростью более 60 км/ч, особенно зимой, когда воздух более плотный. Быстрое движение фронта определяет буйный характер погоды, но, в то же время, более быстрое его прохождение. Наклон холодных фронтов изменяется от 1/30 до 1/100, что, при его движении вперед, создает сильный подъем теплого воздуха. Наклон зависит от температурного контраста между воздушными массами и скорости ветра через фронт.

Если условия стабильные перед и после холодного фронта, то формируются в основном слоистые облака. В этом случае наблюдается медленное очищение неба после фронта, но сам он протекает вяло.

Начало холодных фронтов, особенно в жаркие месяцы несет чистое небо, хорошую видимость и термическую активность, и плотный воздух.

Теплый фронт может нести с собой закрытое облаками небо, высокую влажность, дымку и туманы, жару и дожди на несколько дней. При прохождении теплого фронта теплый воздух набегает на холодный сверху и вытесняет его. Теплые фронты имеют тенденцию двигаться медленнее, чем холодные - 25 км/ч и менее, и отличаются меньшей плотностью воздуха. Наклон его поверхности колеблется от 1/50 до 1/400, что положе, чем у холодного.

Такой наклон теплого фронта является причиной того, что небо полностью закрыто облаками, на расстоянии более чем 2400 км. Приближение теплого фронта можно предсказать по тому, что за день или два до его прохождения появляются перистые облака, далее развивающиеся в перисто-слоистые и перисто-кучевые.

В случае теплого фронта, несущего стабильный воздух, нас ожидает длительный период до дождя и, в основном, спокойные условия, возможно, до самого фронта. В случае нестабильного воздуха нас ожидают проливные дожди, чередующиеся с мелкими, моросящими. Возможна сильная турбулентность с грозами. В любом случае прохождение теплого фронта лучше переждать под крышей.

Барические системы

Барическими системами называются системы распределения атмосферного давления, характеризуемые определенным расположением изобар на картах погоды. Различают главные барические системы, к которым относят циклоны и антициклоны. Существуют также вторичные барические системы (ложбины, гребни и седловины), но мы остановимся на главных, и то в очень узких рамках основных понятий.

Барические системы высокого давления или антициклоны возникают у поверхности земли. В центре такой системы давление максимальное, к периферии оно уменьшается. В наших широтах они возникают в основном над обширными земными поверхностями зимой, когда земля холоднее воды, и над ней воздух более холодный. Типичный пример тому - сибирский антициклон. Летом же, когда земля прогревается сильнее воды, антициклоны могут возникать над обширными водными поверхностями. Этим объясняется большое число солнечных дней летом на морских и океанических побережьях. Два же постоянных антициклона, обусловленных глобальной циркуляцией воздуха в атмосфере земли, расположены над полюсами. Они являются источниками холодных фронтов.

Кроме этого, при движении воздуха вверх, возникают барические системы низкого давления или циклоны. Их возникновение происходит противоположно антициклонам, т. е. над более теплой поверхностью воздух поднимается вверх, создавая зону пониженного давления.

Взаимодействие циклонов и антициклонов является главной причиной возникновения ветров. В антициклоне у поверхности повышенное давление, в циклоне - пониженное. Это определяет направление ветров. В антициклоне воздух движется от центра к периферии, в циклоне - наоборот. Однако свои поправки вносит эффект Кориолиса. Поэтому в антициклоне нашего полушария воздух, двигаясь от центра, поворачивает по часовой стрелке (если смотреть сверху). В южном полушарии наоборот. В циклоне напротив, в нашем полушарии воздух движется к центру против часовой стрелки, в южном - по часовой. Это важно знать для определения направления ветра по синоптической карте, на которой нанесены барические системы.

 

В антициклоне воздух опускается сверху, что приводит к его сжатию, нагреву, уменьшению относительной влажности и увеличению стабильности. Воздух в циклоне поднимается, расширяется, охлаждается, увеличивается относительная влажность и уменьшается стабильность.

Опускающийся воздух движется со скоростью всего несколько сантиметров в секунду, но этого достаточно, чтобы небо очистилось, и ясная погода у нас всегда ассоциировалась с антициклоном. Ирония в том, что добавляющийся воздух вверху, приводит к большей стабильности воздушных масс, что является главной причиной инверсии. Это обычное явление в не пустынных районах умеренной климатической зоны. Даже вслед за холодным фронтом в антициклоне с большой вероятностью следует погода, несущая низкий уровень нестабильности и термической активности, несмотря на чистый холодный воздух и хороший прогрев земли. Однако если антициклон задерживается, то над этой территорией воздух постепенно стабилизируется и термическая активность прекращается совсем.

Поднимающийся воздух в циклоне приводит к большому количеству облаков и осадкам. Он также может вызвать нестабильность, вплоть до образования грозы.

Ветер

Ветер - это горизонтальное перемещение воздуха. Его сила определяется с помощью анемометра. Если его нет под рукой, можно определить скорость ветра по признакам в окружающей среде, указанным в нижеследующей таблице:

Скорость ветра

Эффекты в окружающей среде

 

Штиль

Дым поднимается вертикально вверх, растительность неподвижна

0-5 км/ч (0-1.4 м/с)

Дым поднимается вверх, листва начинает шелестеть

5-8 км/ч (1.4-2.2 м/с)

Дым отклоняется от вертикали, вершины деревьев двигаются

8-15 км/ч (2.2-4.2 м/с)

Дым отклоняется на угол около 45 °, мелкие ветки и трава начинают двигаться.

l 5- 29 км/ч ( 4.2-8.1 м/с)

Дым отклоняется до 60 ° от вертикали, ветки двигаются, трава колышется волнами, одежда на веревках колышется.

29-40 км/ч (8.1-11 м/с)

Дым стелется, крупные ветки волнуются, трава покрывается рябью, одежда волнами, начинают появляться мелкие пылевые смерчи.

40 - 56 км/ч (11-15.6 м/с)

Крупные ветки и средние деревья изгибаются. Одежда полощется. Уносятся пыль и снег.

56 км/ч и более (>15.6 м/с)

Клонятся крупные деревья, автомобили качаются. Трудно идти.

Благодаря эффекту Кориолиса, возникающего из-за вращения земли, в северном полушарии ветер с высотой доворачивает правее на 15-45 °, в южном - левее на 15-45 °. Также с увеличением высоты изменяется его сила от 25% над водной поверхностью до 50% над пересеченной местностью.

Лучший способ определить направление высотного ветра - наблюдение за дрейфом облаков верхнего уровня, выбрав в качестве базы какой-нибудь неподвижный объект на земле. Днем в связи с термической активностью и перемешиванием воздуха ветер усиливается, достигая пика примерно в 15 часов по местному времени, и затихает к вечеру. Его минимальная сила достигается в районе 6-7 часов утра. Также, в термически активные дни, ветер может менять направление в сторону восходящих потоков.

 

Существуют некоторые специфические типы ветров. Мы рассмотрим фены и бризы.

Фен возникает, когда холодные сухие массы воздуха высокого давления застаиваются в запирающем их горном районе. Воздух начинает перетекать через вершины, и, если в долинах по другую сторону гор низкое давление, возникает фен. Скорость его - 60-100 км/ч, отмеченный максимум - около 150 км/ч. Этот ветер может продолжаться несколько дней с постепенным затуханием, внезапными возобновлениями и превращениями. Он типичен для зимы и весны, когда существуют мощные барические системы.

Бриз - ветер, возникающий только на границе водной поверхности и суши. Днем, когда суша более прогрета, воздух над ней поднимается вверх, и его замещает холодный воздух с воды. Эта циркуляция продолжается, пока продолжается прогрев земной поверхности. Ночью ситуация повторяет дневную с точностью до наоборот.

Бриз может проникать на территорию земли в среднем на 10-20 км. Но в пустынных районах отмечались случаи проникновения бриза на 400 км вглубь материка.

 

Проникая внутрь материка, бриз противостоит воздуху с суши, и в том месте, где его движение вглубь прекращается, возникает миниатюрный холодный фронт, называемый фронтом морского бриза.

 

Турбулентность

Турбулентность - это хаотическое, случайное движение воздуха. Хотя некоторые ее виды (например, роторы) и отличаются некоторой организованностью, но хаотичность все-таки является определяющим фактором.

Влияние турбулентности на летательный аппарат сказывается по-разному, в зависимости от интенсивности, размеров и ориентаций вихря. В самых простых случаях турбулентность ощущается, как легкая «болтанка», которая немного затрудняет управление. В худшем случае турбулентность может привести даже к полному разрушению параплана.

Цикл турбулентности начинается, когда она формируется одним из трех способов, о которых будет сказано ниже. Крупный ротор, двигаясь с основным потоком, разбивается на все более мелкие, но увеличивающиеся в количестве вихри. Этот процесс продолжается до тех пор, пока вихри не становятся так малы, что энергия движения гасится вязкостью и подобна тепловому движению (диаметром около 0.25 мм на уровне моря).

Более мелкие вихри могут иметь энергию большую, чем крупные вихри, из которых они образовались. Только с прохождением времени и определенного пути вихри турбулентности уменьшают свою энергию.

Турбулентность образуется тремя способами: механическим, термическим и на срезе потоков. Рассмотрим их по порядку.

Механическая турбулентность создается при обтекании потоком воздуха различных тел.

 

Любое тело, находящееся в потоке воздуха, разбивает его. Если скорость воздуха невелика, то возможно просто отклонение потока, но при больших скоростях поток разбивается с образованием вихрей, которые создают за объектом след, являющийся уже настоящей турбулентностью.

Более скоростной поток создает не только более сильную турбулентность, но и увеличивает ее след за объектом. Также сила и характер турбулентности во многом определяются размерами и формой тела. Объекты с острыми краями образуют гораздо большую турбулентность, чем объекты со сглаженными формами. При обтекании потоком некоторых тел, могут образовываться стабильные формы турбулентности - роторы, расположенные постоянно в одних и тех же местах. Они могут отрываться потоком, и их уносит, но их место тут же занимают новые. В основном они стабильны и занимают свое место, пока существует поток с определенными параметрами. Если скорость потока сильно увеличится, то роторы унесет и на их месте будет сплошная турбулентность.

 

Турбулентность, вызванная любыми твердыми телами, расположенными на земной поверхности, заканчивается на высоте 500 м над самым высоким из них... Величина объектов, стоящих на пути воздушного потока, определяет размеры начальных вихрей. Чем больше преграда, тем больше вихри. Обычно объект создает вихрь в 1/10 - 1/7 своего размера. Энергия вихрей турбулентности пропорциональна квадрату скорости ветра. То есть, при усилении ветра в два раза, сила турбулентности увеличивается в четыре раза. Мощность турбулентности увеличивается с квадратом скорости ветра.

Термическая турбулентность возникает в результате тепловой конвекции воздуха. Она обычно возникает на границах восходящих или нисходящих потоков воздуха.

 

Обычно она наиболее сильна на высотах от 600 до 1300 м, но может достигнуть и нескольких километров в пустынях или в грозовых условиях. Тогда она очень опасна и может перевернуть или даже разрушить небольшой самолет. К счастью, такие экстремальные условия встречаются довольно редко.

Когда нагретый воздух поднимается, его место занимает воздух сверху. Если наверху дует ветер, то движение вниз приведет к тому, что у земли будет ощущение потока, направленного к земле с горизонтальной и вертикальной составляющими. Этот эффект называют «кошачьей лапой» и увидеть его можно в ветреный день с термической активностью по местной ряби на воде, по верхушкам леса, на травяных полях.

Третья и последняя причина возникновения турбулентности - это следствие среза (сдвига) ветра. Под термином срез (сдвиг) понимается соприкосновение двух слоев воздуха, которые имеют различные скорости или направления движения. В таком случае граница между этими двумя слоями становится зоной или слоем турбулентности, возникающей из-за трения между ними.

Турбулентность среза чаще всего встречается возле слоя инверсии. Этот слой может быть на высоте нескольких сотен метров, формируется он опускающимся воздухом в барических системах высокого давления, или ночью, когда приземный слой воздуха остывает быстрее. В горных районах во второй половине дня возникают мощные потоки воздуха, стекающего с гор в долину. Они приводят к образованию сильной турбулентности среза. Этот процесс чаще всего встречается на восточных склонах с глубокими каньонами внизу, в жаркие дни, когда солнце опускается ниже вершин и восточные склоны оказываются в тени. Также турбулентность среза возникает во всех, без исключения фронтах.

Еще один тип турбулентности, которую можно отнести к механической - это спутная струя. Из аэродинамики вы знаете, что воздух перетекает с нижней поверхности на верхнюю через кончики крыльев. Поэтому за кончиками крыльев любого летательного аппарата возникает вихревой след, довольно энергичный. Даже попав в спутную струю от другого параплана можно нахвататься острых ощущений. А о спутных струях от самолетов или, скажем, парамотора, вообще и речи нет. Для параплана, попавшего в них, ничем хорошим это не закончится. Помните о спутных струях, и вы сбережете себе много нервов и здоровья. Эти струи тем интенсивнее, чем больше нагрузка на крыло и чем менее аэродинамически совершенен летательный аппарат, и чем больше углы атаки.

 

В определенных условиях в пересеченной или горной местности могут образовываться роторы. Это стационарные вихри. Они возникают в стабильных условиях при слабых или средних ветрах. В нестабильных условиях (например, термичность) имеется тенденция к их дроблению или уничтожению. В более сильный ветер роторы обычно сдуваются в направлении ветра. В полете надо избегать их любым путем, потому, что они приводят к возникновению сильных нисходящих потоков и создают проблемы в управлении аппаратом. Полет вдоль оси ротора может привести к опрокидыванию. За ротором по направлению ветра всегда тянется зона остаточной турбулентности.

Безопасная зона за подветренной стороной препятствия находится на расстоянии (в метрах)

L = (Н • V) / 2

где Н - высота препятствия в метрах, а V - скорость ветра в км/ч.

 

Восходящие потоки

Как известно, восходящие потоки (термики) образуются из нагретого у земли воздуха, поднимающегося вверх. НО: Пусть этот воздух хоть сто раз нагретый будет лежать слоем у поверхности земли, восходящего потока не образуется, если... если не срабатывает триггер. Триггером называется любая вещь или явление, способное вызвать сотрясение воздуха, или дать ему какой-то стимул для того, чтобы оторваться от земли. Это может быть стадо коров, отдельно едущий автомобиль, в конце концов, порыв ветра. Если триггера нет, то теплый воздух просто застаивается у поверхности земли. Также триггером может служить холм, пусть очень маленький, этого хватает, отдельно стоящее дерево, любая неровность поверхности. Почему? Если аккуратно положить прикуренную папиросу на стол, то из ее мундштука будет выливаться дым и растекаться по столу. Подниматься он не будет, заметьте. Но если в этот слой дыма поставить вертикально карандаш или палец, то дым полезет вверх по этому карандашу. Любые возвышенности на поверхности могут служить отправными точками для термальных потоков.

 

Над одним местом, где пять минут назад был термик, в следующие двадцать пять минут его может не быть. Это связано с тем, что нагретый воздух пузырем «выплескивается» вверх, а на его место поступает холодный. И прежде чем в очередной раз сорваться вверх, этот холодный воздух, естественно должен нагреться. Период между «срабатываниями» термика называется циклом термика и в среднем сохраняет свое значение.

Как определить местонахождение термика? На большой высоте, где не видно мелких деталей на поверхности земли это можно сделать двумя способами. Лучший из них - это кучевые облака. Попав под «живое» кучевое облако на полпути от него к земле вы почти на 100% получите восходящий поток. Второй способ - это ориентируясь на контрасты земной поверхности искать термики над более темными участками поверхности, учитывая, конечно то, что потоки при ветре стоят под наклоном (об этом чуть ниже).

На высоте до 500 м можно попробовать искать потоки по более мелким ориентирам. Ими могут быть рябь на воде или траве, маленькие пылевые смерчи, опять же отдельно стоящие деревья, возвышенности. Если ваша скорость относительно земли часто меняется, это значит, что поток где-то рядом. Если вы летели без скольжения относительно земли, и вдруг оно появилось, значит с той стороны, куда вас потянуло, вероятнее всего находится термик.

В ветреные дни потоки представляют собой не вертикальные столбы воздуха, а наклонные. Угол наклона зависит от силы ветра, при очень сильном ветре потоки будут просто разрываться на мелкие пузыри, которые очень трудно обработать. Также поток может состоять из нескольких, так называемых, «ядер». Более сильные ядра, как правило, находятся с наветренной стороны термика, которая при ветре, также является преградой, создающей некое подобие динамического восходящего потока. Подветренная сторона термиков как правило слабая, и, кроме того, вывалившись из потока с подветренной стороны, вернуться обратно часто оказывается невозможным, потому, что приходится лететь в нисходящем потоке воздуха, да еще и против ветра. Вот почему отправляться «на поиски» термиков лучше всего по ветру.

Последний, и самый действенный способ определить местоположение термика - это наблюдать за другими летательными аппаратами или птицами. Если вы летаете в группе, то можно легко понять, что тот, кого вдруг резко начинает «переть», попал в поток. Летите туда, и, может быть, вы успеете. Также кружащие орлы и прочие птицы почти наверняка находятся в термике и служат хорошим ориентиром для пилотов.

В ветреные, опять же, дни в связи с цикличностью термиков, можно наблюдать такое явление, как «улицы облаков». Они образуются так. Сошедший термик формирует облако, которое начинает сноситься ветром. В это время термик прекращается и наступает перерыв. Пока поток набирает новые силы на земле, облако пролетает какой-то путь, при этом оно может подпитываться другими потоками или жить «за свой счет». Затем в первоначальном месте опять срывается поток, образует новое облако, и так далее, до тех пор, пока не кончится солнечный прогрев.

Улицы облаков являются очень хорошими указателями направления ветра на уровне облаков. Также по ним можно действительно путешествовать, как по настоящим улицам, только учитывая то, что, пролетая вдоль одной улицы от облака к облаку, вы неминуемо попадете в слив. Поэтому «прямо по улице» лучше не летать. Лучше перелетать от облака к облаку где-нибудь в стороне от самой улицы.

И еще одно явление, которое я хочу упомянуть - это «голубая дыра». Она представляет собой кусок чистого и ясного неба диаметром от 3-5 и более км, посреди «цветущей» кучевки. Если вам попадается такой участок - лучше облететь его стороной. На этом участке неба нет ни одного потока. Такие места обычно встречаются над широкими зелеными долинами и лугами, где нет контрастов на земной поверхности.

Смерч и гроза.

Иногда можно видеть движущийся вращающийся поток, поднимающий пыль, листья и другие мелкие предметы, выглядящий как пылевой столб движущегося воздуха. Такое явление называется смерчом.

Смерчи возникают в суперадиабатических условиях. Из-за эффекта Кориолиса, воздух, начинающий подъем в приземном слое, имеет некоторое вращательное движение. Двигаясь с вращением, он ускоряется так же, как ускоряется вращение фигуристки, когда она притягивает к себе руки. Это вращение вскоре становится невидимым. Ускоряющийся термик принимает форму вращающейся колонны, которая с высотой становится туже и плотнее. Смерчи возникают, когда термические потоки поднимаются при суперадиабатическом градиенте температуры. Смерчи расположены под восходящим потоком, обозначают его путь, скорость, размеры, и часто высоту. Смерчи иногда достигают облака над термиком, но обычно, прекращаются намного раньше, поднимаясь только до высоты от нескольких метров до 100 м.

Только в некоторых районах пустынь они могут достигать 1000 м. При изобилии мощных, устойчивых потоков и большом количестве пыли, высота смерчей указывает минимальную высоту потоков, их положение и направление движения. Во время прохождения смерча, кроме полезного восходящего потока, незадачливый пилот может найти неприятные для себя приключения.

Абсолютное большинство смерчей вращаются против часовой стрелки в северном полушарии и по часовой в южном. Есть небезосновательное предположение, что смерчи раскручивают поднимающийся воздух в термиках. Заметное в некоторых случаях вращение облаков над термиками служит тому подтверждением. На этой основе резонно надеяться на лучший подъем летательного аппарата, когда он вращается против потока, закрученного смерчом (по часовой стрелке в северном полушарии). Объясняется это тем, что для удержания аппарата в потоке нужен меньший угол крена из-за меньших скоростей и, следовательно, меньших центробежных сил.

 

 

Смерч - устойчивое образование, и он практически не перемешивается с окружающим воздухом. Наружный воздух пополняет смерч только снизу, где вращение еще медленное и ограниченно землей. Воздух снаружи вращается и поднимается, а внутри нисходящий поток и более низкое давление.

Смерч угасает, когда прекращается подпитка его теплым воздухом или он переходит на территорию, где блокируется его прогресс. Смерч в горах движется вверх и только на прогреваемых склонах. Смерч может некоторое время существовать после разрушения термика, но его энергия затухает и он прекращается.

Термический поток, питаемый смерчом двигаясь по ветру, будет находиться левее смерча в северном полушарии и правее в южном.

Смерчи могут быть очень разными по размерам и скорости вращения. Действительно, некоторые сносят дома - это торнадо. Смерчи, о которых мы ведем речь, похожи на мини-торнадо. Они возникают на поверхности и поднимаются вверх, в то время, как торнадо развиваются от нестабильности на высоте и растут от облаков вниз.

Лучший вариант использовать смерчи как указатели термических потоков, наблюдая за ними. Набор высоты в них - дело не без риска. Внутри границ смерча может быть турбулентность, которая может серьезно ухудшить управляемость летательного аппарата.

Правила полетов в смерчах следующие:

1. Не входите в поток со смерчом на высотах до 300 м от земли;

2. Не входите в смерчи до верха его видимой части;

3. Не используйте слишком большие и сильные смерчи на малых высотах;

4. Выбирайте спираль против вращения смерча;

5. Вновь образовавшийся смерч - лучший указатель термического потока, чем давно существующий.

В пустынях смерчи более мощные и частые. Некоторые из них могут быть 1 км и более в диаметре. На территориях с зеленой растительностью смерчи более редки, слабее и имеют меньший срок жизни. Водяные смерчи возникают при прохождении их над водой. Они обычно коротко живущие и маловысотные, но указывают на хорошие термические условия.

Грозы - это просто суперразвивающиеся термические потоки. Они развиваются из нормальных термических условий, когда воздух в достаточной степени нестабилен, насыщен влагой и существуют некоторые начальные условия. Первые два требования очень важны, в качестве начальных условий могут выступать холодные фронты или горы, но это не необходимо, и нормальная термичность может перерасти в отдельно расположенную грозу при достаточном уровне нестабильности и влажности.

 

Влажность - необходимое условие для образования грозы потому, что только благодаря ей происходит накопление энергии скрытого тепла и выделение ее в облаке при конденсации. Эта энергия является движущей силой бурь, ураганов и сильных ветров. Водяные пары важны еще и потому, что влажный воздух в нижнем слое абсорбирует тепло, что вносит дополнительную нестабильность возле земли. Обычно жизнь грозы разделяют на три этапа: стадия развития грозового облака, стадия максимального развития и стадия разрушения.

Зарождение грозы - это суперразвивающийся термический процесс, тип суперразвития, растущего не вширь, а обязательно по вертикали. Действительно, если инверсионный слой или даже слой сухого воздуха расположен над грозой, то облако будет ограничено по высоте. Отличие нормального облака над сильным, мощным термическим потоком от грозовой тучи в том, что вторая имеет ярко выраженную башню, растущую вверх.

Грозовое облако растет в размерах, достигает большой высоты и становится «тепловым насосом», что-то наподобие дымохода у камина. В нем начинается обледенение верхней части, и она уже состоит из переохлажденных капель, снежинок и ледяных кристаллов, в то время, как внизу продолжается нагрев. Результатом этого являются мощные потоки вверх. Этот «насос» в верхней части облака сосет теплый воздух, находящийся внизу и по сторонам. Такое облако само поддерживает свой продолжающийся рост до готовой, сформировавшейся грозовой тучи, если не ослабевает подпитка влажным воздухом.

На стадии развития гроза не влияет очень сильно на местные ветры, но она может угнетать восходящие потоки на некотором расстоянии вокруг нее и вызывать на обширной территории нисходящие потоки.

Стадия максимального развития начинается по достижении облаком максимальной высоты после уровня замерзания. Десять или пятнадцать минут после этого ледяные кристаллы растут до града. Когда размеры градин превышают те, которые может удержать направленное вверх течение, начинается его выпадение. Продолжающиеся вверх течения (от 10 м/с), могут задуть градины обратно наверх, и это является причиной их дальнейшего роста. Чтобы удержать ледяные образования, достигающие размеров бейсбольного мяча должен быть поток не менее 30 м/с (112 км/ч).

На этой стадии гроза обычно достигает высоты - 10 км. Некоторые монстры простираются к тропопаузе и достигают вершиной 15-18 км. Если вершина грозовой тучи доходит до струйного течения, то она будет двигаться вместе с ним и принимать характерную форму наковальни. Это также приводит к резкому усилению охлаждения при увеличении скорости потока воздуха вверх. Одним из признаков созревшей грозы является образовавшаяся сверху наковальня. Все опасности грозовой ситуации присутствуют именно на этой стадии.

В процессе продолжения грозы, облако становится еще темнее, большей влажности и перерастает в мощное кучево-дождевое. Град создает под уровнем замерзания мощный нисходящий поток. Падая, капельки объединяются в более крупные. Потоки вниз становятся более мощными и скоростными, чем вверх, дождь и град выпадают на землю. Скоростные движения воздуха в облаке вверх и вниз переносят электрические заряды и сверкают молнии. Часты мощные нисходящие потоки и сильные порывы. Под тучей присутствуют потоки вверх и вниз, но первые теперь занимают пространство только на наветренной стороне.

С продолжением мощных нисходящих потоков холодные массы переносятся с высоты вниз. Этот охлаждающий эффект, а также выпадение осадков прекращает прогрев поверхности, восходящие потоки ослабляются, и гроза затухает. Обычно, чрезмерная влажность в облаке приводит к очень мощным осадкам. Молнии и нисходящие потоки могут еще продолжаться на стадии разрушения.

Полный цикл описанных событий занимает от 30 минут до часа или примерно 20 минут, проведенных в стадии максимального развития. Некоторые грозы живут намного дольше. Не все грозы образуются одинаково. Одни мощнее, другие развиваются более медленно. Рассмотрим различные варианты гроз.

Изолированные (isolated) грозы - это грозы, которые развиваются в середине воздушной массы от конвекционных процессов, конвергенции под циклоном при притоке в нее теплого, влажного воздуха. Такая гроза может быть днем или ночью, и очень суровой во влажных районах. Грозы, которые развиваются в горных районах, зарождающиеся от динамических воздушных потоков, тоже можно классифицировать как изолированные, но они могут объединяться в грозовые полосы над горными цепями. Такие грозы особенно часты после обеда или ранним вечером.

Вставные (embedded) грозы - это грозы, находящиеся внутри большой площади облаков, обычно слоистых. Во время формирования вставной грозы ее основание темнее основного слоя облаков. Такая гроза часто образуется при прохождении теплого фронта в восходящем потоке теплого воздуха. Вставные грозы имеют тенденцию быть менее суровыми, потому что восходящий поток воздуха в теплом фронте медленный и сплошной слой облаков уменьшает прогрев поверхности. Но они могут нести смертельную опасность пилотам, которые не готовы определить наличие такой грозы в сплошном слое облаков. Часто предупреждением служит звук грома. Но бывают случаи, когда невозможно услышать его в воздухе. Надо определять наличие грозы визуально по более темному месту в облаках и по прогнозам погоды, которые предупреждают о ее возможности.

Шквальные линии - это устойчивая стена гроз, работающих вместе. Это линия гроз, которые вообще-то живут отдельно, но настолько близко, что создается впечатление единой линии. Шквальные линии часто возникают в условиях холодного фронта с сильными восходящими потоками. Грозы этого типа очень мощные.

Высотные грозы возникают над более сухими территориями, где точка росы на высоте 5000 м или около этого. Грозы в этом случае формируются при низком давлении на высоте и наиболее активны после обеда, но могут возникать и днем и ночью. Характерной особенность высотных гроз является то, что капли дождя редко достигают поверхности земли, успевая высохнуть во время падения. Это испарение охлаждает воздух, сквозь который капли пролетают.

Грозы представляют собой реальную опасность для авиаторов. Потрясающий поток воздуха вверх, часто превышающий скорость 160 км/ч (!!!), может засосать в облако любой летательный аппарат. Без приборного оснащения (включая указатель крена и тангажа), пилот будет не в состоянии управлять летательным аппаратом в условиях грозовой турбулентности. Она же может разрушить летательный аппарат.

К тому же, когда поток в туче несет вас вверх, вы можете столкнуться с кислородным голоданием или переохлаждением, каждое из этих явлений может быть фатальным само по себе.

Надо быть достаточно безрассудным, чтобы лететь в пасть такого монстра, как грозовая туча. В поток под ней легко попасть, но трудно его покинуть.

Приметы погоды

Пилотам-парапланеристам приходится наблюдать за погодой с особой пристальностью и интересом. В этом отношении очень полезно знать многовековой опыт народной метеорологии - всевозможные приметы погоды, выработанные практикой.

 

Приметы предстоящих изменений погоды или, наоборот, ее устойчивости можно найти среди различных явлений на земле и в воздухе. Для этого надо знать их, и постоянно, внимательно наблюдать за ветром, облаками, росой, туманами, цветом зари, неба, видом луны, звезд, солнца, характером дождя, поведением птиц, животных, насекомых, состоянием растений. У парапланеристов частенько бывает под рукой барометр - барометрическая шкала на высотомере. Этот прибор тоже может о многом рассказать в отношении предстоящего дня.

Приметы хорошей, устойчивой погоды

- Барометрическое давление медленно поднимается в течение нескольких дней или остается без изменения при южном ветре.

- Барометрическое давление повышается при сильном ветре.

- Ночью ветра совсем нет, часа через два после восхода солнца он появляется, усиливается к полудню и к вечеру снова стихает.

- Поднявшийся днем ветер все время меняет свое направление, поворачиваясь за солнцем.

- С утра небо совершенно ясно; в 8-9 часов утра появляются первые кучевые облака с плоскими основаниями и куполообразными вершинами. К полудню кучевые облака разрастаются, но не расплываются, и при этом, ни одно облако не вырастает значительно выше другого. К вечеру облака распадаются и к заходу солнца исчезают совсем.

- Кучевые облака не образуются совсем, а день еще более жаркий, чем вчера. Это признаки антициклона и гарантии такой же устойчивой жаркой погоды, которая обычно устанавливается при юго-восточном ветре. Возможны полеты с использованием термиков.

- Небо темно-синее, кажется высоким, а горизонт близким, или затянут жаркой дымкой. Заря желтая, золотисто-желтая или розовая. После заката долго держится серебристое сияние, а сумерки короткие.

- Звезды ночью мерцают слабо, а при мерцании их заметен зеленоватый цвет.

- При полете самолетов на высотах 5-8 км инверсионный след быстро исчезает.

- Солнце садится в безоблачном небе или среди легких тающих облачков. Солнечный диск при закате сплющивается, искривляется, иногда даже как бы разрывается на части.

- Вскоре после заката солнца на земле и траве образуется роса, которая исчезает лишь только к 8 часам утра.

- После заката солнца по ложбинам и низменным местам (или сплошь по всей местности) образуется легкий туман, рассеивающийся к утру.

- Дым от костров и из труб поднимается прямо вверх, а в утренние и вечерние часы медленно растекается на небольшой высоте (по слою инверсии выхолаживания).

- Ласточки, стрижи летают высоко.

- Днем на солнце жарко, но не слишком, ночью становится прохладно. Поднимаясь от реки или из ложбины на возвышенности, чувствуешь, что попадаешь в более теплый воздух. Разница температур днем и ночью достигает 10-15°С.

- Кучевые облака образуются только над сушей и не переходят береговую линию больших водоемов. Над морем безоблачно.

Все перечисленные приметы - признак хорошей устойчивой погоды без осадков. Однако просто хорошую погоду не следует смешивать с парящей погодой. К сожалению, признаков прогнозирования парящей погоды никто не собирал. Тем не менее, обильная роса, ночной туман, резкий перепад дневных и ночных температур издавна считаются парителями верными признаками не только просто хорошей погоды, но и хорошей погоды для парящих полетов, свидетельствующими о том, что днем можно будет рассчитывать на хорошие кучевые облака или термики.

Приметы некоторого ухудшения погоды

Приметы, приводимые ниже, указывают на то, что погода будет становиться малоустойчивой, переменной, с кратковременными дождями:

- Днем ветер неустойчивый, меняет направление то в одну, то в другую сторону, то ослабевает, то усиливается, иногда даже переходит в короткие шквалы, но к ночи ослабевает или стихает совсем.

- Днем кучевые облака появляются рано, быстро разрастаются вверх и вширь, сильно клубятся. Некоторые большие облака сверху постепенно переходят в "наковальню", выбрасывают в сторону "опахала" перисто-слоистых облаков. Под такими облаками почти всегда выпадают ливневые дожди, нередко бывает гроза.

- Кучевые облака не исчезают к вечеру, остаются на небе и ночью.

- Днем небо белесоватое, мутное, вечерняя заря не золотистая, а красноватая и само солнце тоже имеет красный цвет.

- После захода солнца росы нет или бывает очень слабая. Ночные туманы тоже не возникают.

- Ночью не наблюдается большого охлаждения воздуха. После дождя также не бывает заметного похолодания.

- Разница между дневной и ночной температурой сравнительно небольшая, меньше 10°С, а влажность воздуха остается высокой и днем, порядка 70-80%.

- Атмосферное давление держится не очень высоко - 750 - 740 мм, наблюдается его неравномерное понижение: то быстрее, то медленнее; иногда может быть даже кратковременное незначительное повышение с последующим падением.

Приметы, дальнейшего ухудшения погоды

- Ветер не стихает и ночью.

- Большие клубящиеся облака и ливневые дожди, иногда с грозой, а также временами с радугой, наблюдаются уже в первой половине дня.

- Росы не видно совсем. Вечерний туман, если и образуется, то быстро рассеивается.

- Дым от костров и из труб не поднимается кверху, а стелется по земле.

- Инверсионный след за самолетом на высоте не рассеивается, а долго держится, расплываясь по небу.

Приметы наступления ненастной, дождливой погоды

- Давление падает до 740 или даже 730 мм. Если барометр падает очень быстро, это обещает короткое, но бурное ненастье, которое будет продолжаться некоторое время и при повышении давления.

- Наблюдается постепенное понижение кромки облаков, надвигающихся большей частью с северо-запада, запада, юго-запада и юга.

- Вытянутые перистые облака с "крючочками" и "коготками" свидетельствуют о приближении теплого фронта и наступлении обложных дождей.

- Появление множества облаков с северо-запада и запада на всех ярусах говорит о приближении ненастья, менее длительного, чем при теплом фронте, но более бурного, которое связано с прохождением холодного фронта.

- Ветер к вечеру не ослабевает, но даже усиливается, в особенности, если его направление меняется. После дождя ветер так же не ослабевает.

- Звезды сильно мерцают красноватым и синеватым светом.

- Небо кажется низким, даль хорошо просматривается, на горизонте четко вырисовываются предметы, которые обычно в хорошую погоду не видны.

- В воздухе хорошо слышен каждый звук, и даже отдельные звуки доносятся четко.

- Утренние и вечерние зори становятся ярко-красными, темно-красными или багрового цвета. Солнце тоже багрового цвета.

- Вокруг солнца или вокруг луны виден большой белый круг, слегка окрашенный по краям (гало).

- Вечером и ночью воздух заметно теплеет (теплые ночи).

- Если на западной части неба появляются перистые облака, которые надвигаются и уплотняются, но не закрывают всего неба, значит теплый фронт проходит стороной и задевает данную местность только своей периферийной частью, и ухудшение погоды будет менее продолжительным, чем обычно при теплом фронте.

- С запада надвигаются и уплотняются слоисто дождевые облака, на нижней поверхности которых, однако, виднеются обращенные вниз многочисленные темные выпуклости (так называемые, вымеобразные облака). Если эти облака находятся довольно высоко (2-3 км) и не снижаются, значит, дождя может и не быть, а ухудшение погоды кратковременно.

Приметы улучшения погоды и прекращения дождей. Для пилотов очень важно знать, когда же наконец погода пойдет на улучшение и можно будет рассчитывать на парящую погоду. Парители с нетерпением ждут прохождения фронтов и окончании периода затянувшихся дождей. Первые признаки улучшения погоды при затянувшемся ненастье следующие:

- во время дождя ветер довольно резко ослабевает и меняет направление;

- сплошной покров темных дождевых облаков начинает светлеть либо распадаться на отдельные облачные слои, либо переходит в сплошной темно-серый покров в виде облачных валов. Просветы между валами постепенно светлеют, валы разрываются, между ними появляется синее небо;

- после дождя наступает резкое и устойчивое похолодание, и новое повышение температуры наступает не сразу, а через много часов. Это свидетельствует о том, что холодный фронт с сопровождающими его ливнями уже прошел, и над данной местностью распространяется холодная воздушная масса. Через сутки можно ожидать хорошие условия для полетов. В каждой местности есть свои специфические приметы погоды, и пилотам их не мешает знать. Это может помочь ориентироваться в ходе погоды и ее ближайших переменах.

Естественно, хорошую метеоконсультацию специалистов-синоптиков не заменят никакие народные приметы. Но когда вы ночуете в палатке вдали от цивилизации, приметы могут пригодиться. Иногда и одна какая-нибудь из примет (например, солнце за тучу садится - к дождю) оказывается довольно точной, но для верности следует всегда пользоваться не одной, а комплексом примет. Это позволит более точно составлять прогноз погоды и принимать решение, к какому виду полетов на завтра следует готовиться.

В полете же, когда земные приметы становятся непригодными, лучшим средством для прогнозирования развития погоды на ближайшие часы являются облака. Понижение нижней кромки облачности по маршруту - верный признак начавшегося ухудшения погоды. Появление перистой облачности с "крючками" и "коготками" - также безошибочная примета скорого ослабления потоков вследствие приближения теплого фронта. Растекание кучевой облачности по слою инверсии тоже приводит к ослаблению термической деятельности из-за плохого прогрева затененной облаками земли. Перемена направления ветра и его силы - сигнал о том, что близится смена погоды.

Знакомство с народными приметами погоды и постоянное внимание к ней на земле и в воздухе поможет принимать своевременные и правильные решения и летать красиво, а главное, безопасно.



 

Error. Page cannot be displayed. Please contact your service provider for more details. (5)